Abstract

AbstractLightning‐induced Electron Precipitation (LEP) is a known process of electron loss in the Earth's radiation belts. An LEP event progresses with Very Low Frequency (VLF) radio wave radiation from lightning, trans‐ionospheric propagation, and wave‐particle gyroresonance interaction with energetic radiation belt electrons. Pitch angle scattered electrons then precipitate onto the ionosphere, allowing detection using VLF remote sensing using high power transmitters. The relative importance of LEP events as a radiation belt electron lifetime driver has heretofore been unclear. We build off a massive database of LEP events observed within the continental US (CONUS) by a network of VLF receivers. For each observed LEP event, based on the characteristics of the ionospheric disturbance, we apply a suite of models to estimate the total number of precipitating electrons, which we can then sum up over all LEP events to quantify lightning's contribution within CONUS. We find that LEP events within CONUS appear to be capable of removing a substantial fraction (up to 0.1%–1%) of radiation belt electrons between 33 and 1,000 keV, and may have stronger contributions to radiation belt losses than earlier estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.