Abstract

BackgroundPAM50 gene profiling assigns each cancer to a single intrinsic subtype. However, individual cancers vary in their adherence to a prototype, and due to bulk tissue sampling, some may exhibit expression patterns that indicate intra-tumor admixture of multiple subtypes. Our objective was to develop admixture metrics from PAM50 gene expression profiles in order to stratify Luminal A (LumA) cases according to their degree of subtype admixture, and then relate such admixture to clinical and molecular variables.MethodsWe re-constructed scaled, normalized PAM50 profiles for 1980 cases (674 LumA) in the METABRIC cohort and for each case computed its Mahalanobis (M-) distance from its assigned centroid and M-distance from all other centroids. We used t-SNE plots to visualize overlaps in subtype clustering. With Normal-like cases excluded, we developed two metrics: Median Distance Criteria (MDC) classified pure cases as those located within the 50th percentile of the LumA centroid and > =50th percentile from any other centroid. Distance Ratio Criteria (DRC) was computed as the ratio of M-distances from the LumA centroid to the nearest non-assigned centroid. Pure and admixed LumA cases were compared on clinical/molecular traits. TCGA LumA cases (n = 509) provided independent validation.ResultsCompared to pure cases in METABRIC, admixed ones had older age at diagnosis, larger tumor size, and higher grade and stage. These associations were stronger for the DRC metric compared to MDC. Admixed cases were associated with HER2 gain, high proliferation, higher PAM50 recurrence scores, more frequent TP53 mutation, and less frequent PIK3CA mutation. Similar results were observed in the TCGA validation cohort, which also showed a positive association between admixture and number of clonal populations estimated by PyClone. LumA-LumB confusion predominated, but other combinations were also present. Degree of admixture was associated with overall survival in both cohorts, as was disease-free survival in TCGA, independent of age, grade and stage (HR = 2.85, Tertile 3 vs.1).ConclusionsLuminal A breast cancers subgrouped based on PAM50 subtype purity support the hypothesis that admixed cases have worse clinical features and survival. Future analyses will explore more extensive genomic metrics for admixture and their spatial significance within a single tumor.

Highlights

  • Prediction Analysis of Microarray 50 (PAM50) gene profiling assigns each cancer to a single intrinsic subtype

  • Our underlying premise is that intrinsic subtypes represent favored pathways for clonal evolution in breast cancer, and that a straighforward metric based on adherence to an assigned subtype versus adherence to an alternate subtype is a reflection of subtype admixture

  • Significant overlap is evident between various PAM50 clusters, with cases assigned to the Basal sub-type forming the only visually distinct cluster

Read more

Summary

Introduction

PAM50 gene profiling assigns each cancer to a single intrinsic subtype. Individual cancers vary in their adherence to a prototype, and due to bulk tissue sampling, some may exhibit expression patterns that indicate intra-tumor admixture of multiple subtypes. A number of computational methods have been developed to infer and measure intra-tumor heterogeneity based on genomic data from single-region bulk samples [14,15,16]. In contrast to these important efforts at characterizing global genomic heterogeneity, our approach, by identifying cases that are ambiguous with respect to a class prototype, focuses on subtype heterogeneity and the potential coexistence of multiple subtypes within a single breast cancer. Our underlying premise is that intrinsic subtypes represent favored pathways for clonal evolution in breast cancer, and that a straighforward metric based on adherence to an assigned subtype versus adherence to an alternate subtype is a reflection of subtype admixture

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call