Abstract

Interbacterial competition can directly impact the structure and function of microbiomes. This work describes a fluorescence microscopy approach that can be used to visualize and quantify competitive interactions between different bacterial strains at the single-cell level. The protocol described here provides methods for advanced approaches in slide preparation on both upright and inverted epifluorescence microscopes, live-cell and time-lapse imaging techniques, and quantitative image analysis using the open-source software FIJI. The approach in this manuscript outlines the quantification of competitive interactions between symbiotic Vibrio fischeri populations by measuring the change in area over time for two coincubated strains that are expressing different fluorescent proteins from stable plasmids. Alternative methods are described for optimizing this protocol in bacterial model systems that require different growth conditions. Although the assay described here uses conditions optimized for V. fischeri, this approach is highly reproducible and can easily be adapted to study competition among culturable isolates from diverse microbiomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.