Abstract

Hydroxylated polybrominated diphenyl ethers (OH-BDEs) are a new class of contaminants of emerging concern, but the relative roles of natural and anthropogenic sources remain uncertain. Polybrominated diphenyl ethers (PBDEs) are used as brominated flame retardants, and they are a potential source of OH-BDEs via oxidative transformations. OH-BDEs are also natural products in marine systems. In this study, OH-BDEs were measured in water and sediment of freshwater and coastal systems along with the anthropogenic wastewater-marker compound triclosan and its photoproduct dioxin, 2,8-dichlorodibenzo-p-dioxin. The 6-OH-BDE 47 congener and its brominated dioxin (1,3,7-tribromodibenzo-p-dioxin) photoproduct were the only OH-BDE and brominated dioxin detected in surface sediments from San Francisco Bay, the anthropogenically impacted coastal site, where levels increased along a north-south gradient. Triclosan, 6-OH-BDE 47, 6-OH-BDE 90, 6-OH-BDE 99, and (only once) 6’-OH-BDE 100 were detected in two sediment cores from San Francisco Bay. The occurrence of 6-OH-BDE 47 and 1,3,7-tribromodibenzo-p-dioxin sediments in Point Reyes National Seashore, a marine system with limited anthropogenic impact, was generally lower than in San Francisco Bay surface sediments. OH-BDEs were not detected in freshwater lakes. The spatial and temporal trends of triclosan, 2,8-dichlorodibenzo-p-dioxin, OH-BDEs, and brominated dioxins observed in this study suggest that the dominant source of OH-BDEs in these systems is likely natural production, but their occurrence may be enhanced in San Francisco Bay by anthropogenic activities.

Highlights

  • Polybrominated diphenyl ethers (PBDEs) have been used as flame retardants in textiles, polyurethane foam furniture padding, and electronics since the 1970s

  • 16–27 2–8 3–21 2–18 28 8 determined that 6’-OH-BDE 100, labeled and unlabeled, transformed into another unknown OH-PentaBDE. This transformation was enhanced during the sediment extraction and the transformation peak was slightly less retained than the (13C12-)6’-OH-BDE 100 during liquid chromatograph (LC)-MS-Q3 tandem mass spectrometer (MS/MS) analysis

  • Wastewater effluent is the main source of triclosan, but PBDEs have numerous pathways including: manufacturing facilities [1], sewage/wastewater effluent [1,2], and atmospheric deposition [3]

Read more

Summary

Introduction

Polybrominated diphenyl ethers (PBDEs) have been used as flame retardants in textiles, polyurethane foam furniture padding, and electronics since the 1970s. Manufacturing facilities [1], sewage/wastewater effluent [1,2], and atmospheric deposition [3] are all known sources of PBDE pollution. San Francisco Bay is a global hotspot for PBDE contamination, likely a result of California’s early adoption of stringent flammability standards. In 2002, the San Francisco Regional Monitoring Program for Trace Substances (RMP) began monitoring PBDEs in water, surface sediments, and bivalves [4]. Since the ban of commercial mixtures in 2003 of Penta-BDE (which contains BDE-47, BDE-99, BDE-100, BDE-153, and BDE-154 –the most widespread and bioaccumulative congeners) and Octa-BDE, PBDE levels in the estuary have declined in fish, bivalves, bird eggs, and sediment [5]. The reservoir of previously released PBDEs and the debromination of decaBDEs, are a continuing source of these less-substituted congeners of greatest concern

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call