Abstract

Tungsten-based materials are possible candidates as PFCs in future fusion devices. LIBS is one of the most suitable techniques for monitoring erosion and deposition processes including fuel retention, due to its versatility and ability to perform in situ measurements. By deploying ps-LIBS, instead of ns, the laser ablation occurs with fewer melting effects. This work compares ns- and ps- (CF)-LIBS characterization of WZr(D) samples, at the linear plasma generator at Magnum-PSI at the DIFFER. The laser energy has been optimized for both laser regimes, lowering the laser energy for the ns regime (from 19.9 mJ pulse−1 to 7.4 mJ pulse−1) to approximate to ps regime (0.3 mJ pulse−1). All the experimental measurements have been performed at Patm. The pure WZr samples have been analyzed in ambient air, while the WZrD sample measurements have been performed under Ar gas flow. The retained deuterium content varies from 4 at% to 0.3 at%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.