Abstract

The degradation of polymer light-emitting diodes (PLEDs) under current stress is governed by the formation of hole traps. The presence of traps is reflected in the low-frequency response of PLEDs by a negative contribution to the capacitance that originates from trap-assisted recombination. Since the relaxation time scales with the (inverse) concentration of traps, impedance spectroscopy measurements allow for a quantitative determination of the amount of traps formed during degradation. We demonstrate that the obtained hole trap concentration is in agreement with the amount found by numerically modeling the increase in the PLED driving voltage. Impedance spectroscopy measurements are therefore useful as an in-situ characterization tool during PLED degradation, providing information on trap formation without numerical device modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.