Abstract

This study focuses on the characteristics of near-fault ground motions in the forward-direction and structural response associated with them. These ground motions are narrow-banded in nature and are characterized by a predominant period at which structures excited by them are severely affected. In this work, predominant period is defined as the undamped natural period of a single-degree-of-freedom (SDOF) oscillator at which its 5% damped linear elastic pseudo-spectral velocity (PSV) contains a clear and dominant peak. It is found that a linear relationship exists between predominant period and seismic moment. An empirical equation describing this relationship is presented by using a large set of accelerograms. Attenuation equations are developed to estimate peak ground velocity (PGV) as a function of earthquake magnitude and source-to-site distance. In addition, a predictive equation for spectral shapes of PSV (i.e., PSV normalized by PGV) is presented as a continuous function of the undamped natural period of SDOF oscillators. The model is independent of PGV, and can be used in conjunction with any available PGV attenuation relation applicable to near-fault ground motion exhibiting forward-directivity effects. Furthermore, viscous damping of the SDOF is included in the model as a continuous parameter, eliminating the use of so-called damping correction factors. Finally, simple equations relating force reduction factors and displacement ductility of elasto-plastic SDOF systems are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call