Abstract

Monitoring of fatigue cracks in steel bridges is of interest to bridge owners and agencies. Monitoring of fatigue cracks has been attempted with acoustic emission using either resonant or broadband sensors. One drawback of passive sensing is that the data is limited to that caused by growing cracks. In this work, passive emission was complemented with active sensing (piezoelectric wafer active sensors) for enhanced detection capabilities. Passive and active sensing methods were described for fatigue crack monitoring on specialized compact tension specimens. The characteristics of acoustic emission were obtained to understand the correlation of acoustic emission behavior and crack growth. Crack and noise induced signals were interpreted through Swansong II Filter and waveform-based approaches, which are appropriate for data interpretation of field tests. Upon detection of crack extension, active sensing was activated to measure the crack size. Model updating techniques were employed to minimize the difference between the numerical results and experimental data. The long term objective of this research is to develop an in-service prognostic system to monitor structural health and to assess the remaining fatigue life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call