Abstract

Liquid metals are expected to be used as nuclear materials, such as coolant for nuclear reactors and spallation targets for neutron sources, because of their good thermal conductivity and neutron production. However, in specific combinations, liquid metals have the potential to degrade structural integrity of solid metals because of Liquid Metal Embrittlement (LME). In this study, the effect of mercury immersion on fatigue crack propagation rate in SUS316 was investigated through fatigue tests with a notched specimen under mercury immersion. FRActure Surface Topography Analysis (FRASTA) with the measurement of the notch opening distance was performed to estimate the fatigue crack growth rate in mercury. The results showed that the fatigue crack growth rate was slightly higher in mercury than that in the air in the low cycle fatigue region. This suggests that the crack propagation is accelerated by mercury immersion in high stress imposition regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.