Abstract

In this work, we study the quantum entanglement for doubly excited resonance states in helium by using highly correlated Hylleraas type functions to represent such states of the two-electron system. The doubly-excited resonance states are determined by calculation of density of resonance states under the framework of the stabilization method. The spatial (electron–electron orbital) entanglement measures for the low-lying doubly excited 2s 2, 2s3s, and 2p 2 1 S e states are carried out. Once a resonance state wave function is obtained, the linear entropy and von Neumann entropy for such a state are quantified using the Schmidt-Slater decomposition method. To check the consistence, linear entropy is also determined by solving analytically the needed four-electron (12-dimensional) integrals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call