Abstract
Therapeutic drug monitoring (TDM) of tyrosine kinase inhibitors (TKIs) in cancer therapy offers the potential to improve treatment efficacy while minimizing toxicity. Therefore, a high-throughput, sensitive LC-MS/MS method was developed and validated, to be used for personalized treatment of hematologic malignancies. The assay allows the simultaneous quantification in plasma (EDTA and heparin) and whole blood of eight TKIs, including bosutinib, dasatinib, gilteritinib, ibrutinib, imatinib, midostaurin, nilotinib and ponatinib, which are used in the treatment of chronic and acute myeloid leukemia (CML, AML) and chronic lymphocytic leukemia (CLL). The procedure involves simple protein precipitation of 50 μL of sample, a 4-min chromatographic separation by applying gradient elution on a standard reverse phase column, and tandem mass spectrometric detection. The method was successfully validated based on international guidelines in terms of calibration curves, precision (within-run CV 0.74–16.4%; between-run CV 1.65–17.8%), accuracy (within-run bias 0.07–19.8%; between-run bias 0.05 to −17.6%), carry-over (max 19.4%, for ponatinib), selectivity, matrix-effects, recovery (ranging from 61 to 128%), stability (only issues observed for ibrutinib) and dilution integrity. Furthermore, the accuracy of the method was demonstrated by analyzing external quality controls, with a maximum bias of −11.3%. Assay applicability was demonstrated by analyzing authentic plasma and whole blood samples in order to derive blood-plasma ratios and the variation thereof. The latter are important to allow possible blood-plasma conversion when envisaging possible future implementation of TDM via dried blood microsampling. The presented method can be applied in clinical practice for performing TDM of TKIs in plasma and whole blood samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.