Abstract

Summary Local displacement efficiency in gasfloods depends strongly on the minimum miscibility pressure (MMP) or minimum miscibility enrichment (MME). The values for these design parameters depend in turn on the displacement mechanisms: vaporizing, condensing, or a combination of the two known as a condensing/vaporizing (CV) drive. Characterization of the displacement mechanism, however, is currently limited to these broad categories, with little reference to the degree to which a CV displacement is condensing or vaporizing. This "discrete" classification approach can result in significant confusion in the interpretation and comparison of various miscible gasfloods. The focus of this paper, therefore, is to present a method to quantify in a continuous way the fraction of a multicomponent gasflood that is vaporizing or condensing as the pressure or gas enrichment is increased. The approach relies on finding key tie lines for a dispersionfree 1D displacement using method of characteristic theory (MOC). We quantify the displacement mechanism for any number of oil or gas components by calculating the displacement path lengths along ruled surfaces bounded by these key tie lines. We show how to determine the displacement mechanism along each of these ruled surfaces by the calculation and comparison of the key tie-line lengths. Several multicomponent fluid characterizations are considered, including a 12-component enriched-gasflood and a 13-component CO2 flood. The results show that as the pressure or enrichment is increased, condensation occurs at the expense of vaporization. We also show by numerical simulations that the sensitivity of the local displacement efficiency to dispersion depends on the condensing fraction of the displacement. We show that the trends in displacement efficiency sensitivity to dispersion oppose previously published results, which showed that vaporizing displacements are more sensitive to dispersion than condensing ones. The differing trends are likely the result of improper and discrete determination of the displacement mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.