Abstract

Measurements of laminations from marine and limnic sediments are commonly a time-consuming procedure. However, the resulting quantitative proxies are of importance for the interpretation of both, climate changes and paleo-seismic activities. Digital image analysis accelerates the generation and interpretation of large data sets from laminated sediments based on contrasting grey values of dark and light laminae. Statistical transformation and correlation of the grey value signals reflect high frequency cycles due to changing mean laminae thicknesses, and thus provide data monitoring climate change. Perturbations (e.g., slumping structures, seismites, and tsunamites) of the commonly continuous laminae record seismic activities and obtain proxies for paleo-earthquake frequency. Using outcrop data from (i) the Pleistocene Lisan Formation of Jordan (Dead Sea Basin) and (ii) the Carboniferous–Permian Copacabana Formation of Bolivia (Lake Titicaca), we present a two-step approach to gain high-resolution time series based on field data for both purposes from unconsolidated and lithified outcrops. Step 1 concerns the construction of a continuous digital phototransect and step 2 covers the creation of a grey density curve based on digital photos along a line transect using image analysis. The applied automated image analysis technique provides a continuous digital record of the studied sections and, therefore, serves as useful tool for the evaluation of further proxy data. Analysing the obtained grey signal of the light and dark laminae of varves using phototransects, we discuss the potential and limitations of the proposed technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.