Abstract

Attempts have been made in the present work using in silico techniques for identification of essential structural features imparting antioxidant potential to naturally available coumarin molecules and their synthetic derivatives. Four different types of modeling tools have been employed for the qualitative and quantitative assessment of the molecular fragments constituting the biological pharmacophore. The descriptor-based quantitative structure–activity relationship (QSAR) and group-based QSAR (G-QSAR) models provide a quantitative estimation of the substituent requirements and the chemical nature of the parent moiety. Subsequently, 3D pharmacophore and hologram QSAR (HQSAR) models enable identification of the key molecular components necessary for the antioxidant potency to the molecules. All of the different models infer the importance of the hydrogen bond acceptor ketonic fragment for interaction of the antioxidant molecules with the neighbouring toxic radicals. Additionally, the phenyl substituent attached to the side chain and the benzene nucleus of the benzopyran moiety also constitute the response pharmacophore for the molecules under study. The models thus developed may serve as an essential query tool for screening of databases for selection of molecules bearing the essential fragments and subsequent prediction of their free radical scavenging potency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call