Abstract

Multi-component ultra-high temperature ceramics (MC-UHTCs) has garnered attention due to their improved thermo-mechanical and oxidation properties. MC-UHTC was progressively formed by adding a UHTC component at each step, producing binary, ternary and quaternary UHTC systems, processed by spark plasma sintering (SPS).We investigate the role of multi-elements and thermochemical stability of the surface oxide layer formed during plasma arc jet exposure (T > 2500 °C) of MC-UHTCs using core-level X-ray photoelectron spectroscopy (XPS) correlated with the structural investigation. The results indicate that adding a UHTC component improves oxidation resistance due to the assemblage of refractory phases forming complex mixed oxides via preferential oxidation. XPS spectra of Ta4f, Nb3d, Ti1p, and Hf4f showed that the nature of the chemical bonds switched from metal carbides to metal oxides (and metal oxy-carbides) in the binary system with retained metal carbides in ternary and quaternary UHTCs. The absence of a metal carbide peak in the high-resolution C1s scan of the binary system also supports this finding. The principal complex mixed oxide phases emanated in the exiguous oxidation of MC-UHTCs are quantified using Rietveld analysis. Overall, this study suggests that MC-UHTC is a promising material for possible application in thermal protection systems (TPS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call