Abstract

Metabolic pathways of the intermediate metabolism of maize root tips were identified and quantified after labeling to isotopic and metabolic steady state using glucose labeled on carbon-1, -2, or -6 with 14C or 13C. The specific radioactivity of amino acids and the 13C-specific enrichment of specific carbons of free glucose, sucrose, alanine and glutamate were measured and used to calculate metabolic fluxes. The non-triose pathways, including synthesis of polysaccharides, accumulation of free hexoses, and to a lesser extent starch synthesis, were found to consume 75% of the glucose entering the root tips. The cycle of synthesis and hydrolysis of sucrose was found to consume about 70% of the ATP produced by respiration. The comparison of the specific radioactivities of amino acids and phospholipid glycerol phosphate after labeling with [1-(14)C] or [6-(14)C]glucose revealed the operation of the pentose phosphate pathway. The transfer of label from [2-(14)C]glucose to carbon-1 of starch glucosyl units confirmed the operation of this pathway and indicated that it is located in plastids. It was found to consume 32% of the hexose phosphates entering the triose pathways. The remaining 68% were consumed by glycolysis. The determination of the specific enrichment of carbohydrate carbons -1 and -6 after labeling with [1-(13)C]glucose indicated that both the conversion of triose phosphates back to hexose phosphates and the transaldolase exchange contributed to this randomization. Of the triose phosphates produced by glycolysis and the pentose phosphate pathway, about 60% were found to be recycled to hexose phosphates, and 28% were directed to the tricarboxylic acid cycle. Of this 28%, two-thirds were found to be directed through the pyruvate kinase branch and one-third through the phosphoenolpyruvate branch. The latter essentially has an anaplerotic function since little malate was found to be converted to pyruvate (malic enzyme reaction).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.