Abstract

We present a dual-imaging technique combining laser speckle contrast imaging and spectral-domain Doppler optical coherence tomography to enable quantitative characterization of local cerebral blood flow (CBF) changes in rat cortex in response to drug stimulus (e.g., cocaine) at high spatiotemporal resolutions. To examine the utility of this new technique, animal experiments were performed to study the influences of anesthetic regimes (e.g., isoflurane, alpha-chloralose) on the pharmadynamic effects of acute cocaine challenge. The results showed that cocaine-evoked CBF patterns (e.g., increases in alpha-chloralose and decreases in isoflurane regimes) were quantitatively characterized, thus rendering it a potentially useful tool for imaging studies of brain functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call