Abstract

ABSTRACT Climate change impact on rainfall-induced landslide susceptibility of a certain region is often implied based on expected changes in rainfall patterns and rarely explicitly quantified. This study aims to address this gap by implementing coupled landslide and climate modelling chains to explicitly assess the effects of changing rainfall patterns on rainfall-induced landslide susceptibility. The effects of climate change are integrated into the landslide modelling chain via Intensity-Duration-Frequency (IDF) curves for the present and future climate conditions for a landslide-prone study area located in central Norway. The effects of climate change on landslide susceptibility are examined by using a physical-based landslide prediction model with rainfall events of varying duration and intensity that are simulated based on the climate-dependent IDF curves. The novelty of this study is the proposition of a novel probabilistic framework to assess the climate change impact on landslide susceptibility for rainfall events with a given duration. The proposed framework accounts for both the uncertainties of rainfall events through probabilistic interpretation of IDF curves and the uncertainties in the landslide model with the Monte Carlo method. Compared to results based on only intense rainfall events, the proposed framework leads to a lower increase in the probability of landslide initiation and landslide-susceptible extents due to climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call