Abstract

Cancer is a serious threat to human health. Although numerous anti-cancer drugs are available clinically, many have shown toxic side effects due to poor tumor-selectivity, and reduced effectiveness due to cancers rapid development of resistance to treatment. The development of new highly efficient and practical methods to quantify cell viability and its change under drug treatment is thus of significant importance in both understanding of anti-cancer mechanism and anti-cancer drug screening. Here, we present an approach of utilizing a nanomechanical fluctuation based highly sensitive microcantilever sensor, which is capable of characterizing the viability of cells and quantitatively screening (within tens of minutes) their responses to a drug with the obvious advantages of a rapid, label-free, quantitative, noninvasive, real-time and in-situ assay. The microcantilever sensor operated in fluctuation mode was used in evaluating the paclitaxel effectiveness on breast cancer cell line MCF-7. This study demonstrated that the nanomechanical fluctuations of the microcantilever sensor are sensitive enough to detect the dynamic variation in cellular force which is provided by the cytoskeleton, using cell metabolism as its energy source, and the dynamic instability of microtubules plays an important role in the generation of the force. We propose that cell viability consists of two parts: biological viability and mechanical viability. Our experimental results suggest that paclitaxel has little effect on biological viability, but has a significant effect on mechanical viability. This new method provides a new concept and strategy for the evaluation of cell viability and the screening of anti-cancer drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.