Abstract

The T-derived subset of human peripheral blood normal lymphocytes has been selected as a model system to study the usefulness of 5 nm gold markers for quantification of single epitopes expressed on cell surfaces. The chosen epitopes are parts of the CD3 and CD5 molecules and can be specifically identified by hybridoma produced monoclonal antibodies (MoAbs; LEU-4 and LEU-1; Becton-Dick- inson, Mountain view, CA) . An indirect immunolabeling procedure, with goat anti-murine IgG adsorbed on the surface of 5 nm colloidal gold particles (GAM-G5, Janssen Pharmaceutica, Beerse, Belgium) has been used. Backscattered Electron Imaging (BEI) in a field emission scanning electronmicroscope (SEM) and transmission electron microscopy of thin sections of lymphocytes labeled before plastic embedding, were both used to identify and quantitate gold labeled cell surface sites, Estimating that the thickness of “silver” sections is approximately 60 nm and counting the number of gold particles on the entire cell perimeter, we calculated that, for LEU-4, the number of markers per um2 of cell surface is in the 140-160 range (Fig.l). Cell contour length measurements indicated that the surface of one lymphocyte is approximately 130-160 um2 that of a smooth sphere of identical diameter, reflecting the role of microvilli in expanding the surface area. The total number of gold labeled sites on the surface of one lymphocyte averages, therefore between 20,000 and 24,000 per cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.