Abstract

Diffuse correlation spectroscopy (DCS) is a noninvasive technique that derives blood flow information from measurements of the temporal intensity fluctuations of multiply scattered light. Blood flow index (BFI) and especially its variation was demonstrated to be approximately proportional to absolute blood flow. We investigated and assessed the utility of a long short-term memory (LSTM) architecture for quantification of BFI in DCS. Phantom and in vivo experiments were established to measure normalized intensity autocorrelation function data. Improved accuracy and faster computational time were gained by the proposed LSTM architecture. The results support the notion of using proposed LSTM architecture for quantification of BFI in DCS. This approach would be especially useful for continuous real-time monitoring of blood flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call