Abstract

Burrow and tube structures of marine infauna were quantified in sediments from cores obtained at 3 depths (75, 95 and 118 m) at 3 occasions over a 1-year period. The benthic communities at the two deeper stations were re-establishing subsequent to re-oxygenation after hypoxic conditions; the shallow station was a reference station unaffected by hypoxia. The benthic macrofauna was simultaneously quantified from sieved grab samples. The sediment cores were frozen and later sliced with a plane in horizontal layers. Biogenic structures in these sections were digitally analysed for numbers, area and volume. Number of tubes and burrows showed a general decline with depth in the sediment. The biogenic structures in the sediment at the reference station increased the sediment–water interface about 1.5 times compared to the surface area. The surface areas of burrows and tubes were 2 to 3 times larger at the reference station than at the deeper stations. The benthic fauna at the 95-m and 118-m stations showed a temporal increase in density and number of species. In contrast, development of biogenic surface areas in the sediment at these stations showed no significant temporal trend during the benthic faunal succession. Relic tubes of Melinna cristata were found throughout the sampling period at the 118-m station. The ecological importance of bioirrigation for biogeochemical processes is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call