Abstract

Herein, we propose a metabolic d-amino acid-based labeling and in situ hybridization-facilitated (MeDabLISH) strategy for the quantitative analysis of the indigenous metabolic status of gut bacteria. The fluorescent d-amino acid (FDAA)-based labeling intensities of bacteria were found to highly correlate with their temporal and steady-state metabolic status. Then, after taxonomic identification of bacterial genera in the in vivo FDAA-labeled mouse gut microbiota, by corresponding fluorescence in situ hybridization (FISH) probes, the metabolic activities of different gut bacterial genera are quantified by flow cytometry, using FISH signals to differentiate genera and FDAA signals to indicate their basal metabolic levels. It was found that Gram-negative genera in the mouse microbiota have stronger metabolic activities during the daytime, and Gram-positive genera have higher activities at the night. Our strategy will be instrumental in deepening our understanding of the highly complex microbiota.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.