Abstract

We developed a novel fluorescence labeling technique for quantification of surface densities of atom transfer radical polymerization (ATRP) initiators on polymer particles. The cationic P(St-CPEM-C4DMAEMA) and anionic P(St-CPEM) polymer latex particles carrying ATRP-initiating chlorine groups were prepared by emulsifier-free emulsion polymerization of styrene (St), 2-(2-chloropropionyloxy)ethyl methacrylate (CPEM), and N-n-butyl-N,N-dimethyl-N-(2-methacryloyloxy)ethylammonium bromide (C4DMAEMA). ATRP initiators on the surface of polymer particles were converted into azide groups by sodium azide, followed by fluorescent labeling with 5-(N,N-dimethylamino)-N′-(prop-2-yn-1-yl)naphthalene-1-sulfonamide (Dansyl-alkyne) by copper-catalyzed azide-alkyne cycloaddition (CuAAC). The reaction time required for both azidation of ATRP-initiating groups and successive fluorescence labeling of azide groups with Dansyl-alkyne by CuAAC were investigated in detail by FTIR and fluorescence spectral measurement, respectively. The ATRP initiator densities on the cationic P(St-CPEM-C4DMAEMA) and anionic P(St-CPEM) particle surfaces were estimated to be 0.21 and 0.15 molecules nm−2, respectively, which gave close agreement with values previously determined by a conductometric titration method. The fluorescence labeling through click chemistry proposed herein is a versatile technique to quantify the surface ATRP initiator density both on anionic and cationic polymer particles. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4042–4051

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.