Abstract

Subsurface injection of oxygen-releasing materials (ORMs) is frequently performed at petroleum-contaminated sites to stimulate aerobic bioremediation of benzene, toluene, ethylbenzene, and xylenes (BTEX). In this study, qPCR enumeration of aromatic oxygenase genes and PCR-DGGE profiles of bacterial 16S rRNA genes were combined with groundwater monitoring to determine the impact of ORM injection on BTEX bioremediation at a gasoline-contaminated site. Prior to injection, BTEX concentrations were greater than 3 mg/L and DO levels were typically lessthan 2 mg/L, butphenol hydroxylase (PHE) and ring-hydroxylating toluene monooxygenase (RMO) genes were detected in impacted wells indicating the potential for aerobic BTEX biodegradation. Following injection, DO increased, BTEX concentrations decreased substantially, and PHE and RMO genes copies increased by 1-3 orders of magnitude. In addition, naphthalene dioxygenase (NAH) and xylene monooxygenase (TOL) genes were intermittently detected during periods of increased DO. Following depletion of the ORM, DO decreased, BTEX concentrations rebounded, and oxygenase genes were no longer detected. Temporal changes in PCR-DGGE microbial community profiles reflected the dynamic changes in subsurface conditions. Overall, the combination of chemical and geochemical analyses with quantification of aromatic oxygenase genes demonstrated that injection stimulated BTEX biodegradation until the ORM was depleted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.