Abstract
Wild-animals can act as reservoirs for resistant bacteria and transfer of resistance genes in the environment. These genes can spread to livestock and human either directly by transmission of shared resistant bacteria, or by horizontal gene-transfer to environmental bacteria. To ascertain at what extent wild-animals carry resistance genes, eight faecal samples from buffalo, zebra and wildebeest from Ngorongoro Conservation Area (NCA) and Mikumi National Park (MNP), and four control samples from local zebu cattle grazing together with wildlife in NCA. The qPCR was carried on 14 antimicrobial resistance genes including tetracycline (tet(A), tet(B), 93 tet(C), tet(M), tet(O), tet(W), macrolide, lincosamide, streptogramin B (ermB, ermF), sulphonamide (sulI, sulII), beta-lactam (blaCTX-M-1 group, blaCMY-2, blaSHV) and glycopeptide (vanA). Samples from NCA, both wildlife and cattle were positive for 8 out of 14 resistance genes. The most prevalent genes were tet(W) and blaCMY-2 with the latter being of concern in encoding ESBL-type resistance. Three samples from Buffalo not interacting with cattle in MNP, were positive for tet(W) and blaCMY-2, and in addition for sulI. This suggests that wild ungulates on savannah, irrespective of contact with cattle, may constitute a reservoir for antimicrobial resistance determinants. Further studies are indicated to determine resistance gene-pool among wildlife animals
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.