Abstract

Young children are particularly vulnerable to air pollution exposure during their early childhood development, yet research on exposure to in-pram babies in different types of single/double prams is limited. This work aims to mimick their exposure to multiple air pollutants – particulate matter ≤10 µm in aerodynamic diameter (PM10), ≤2.5 µm (PM2.5; fine particles), ≤1 µm (PM1), ≤0.10 µm (measured as particle number concentration, PNC) – in three different types of prams (single pram facing the road; single pram facing parents; double pram facing the road). We also assessed the differences in exposure concentrations between typical adult and in-pram baby breathing height via simultaneous measurements besides assessing their physico-chemical properties (morphology and elemental composition). In addition, we analysed the impact of pram covers in mitigating in-pram exposure concentrations of selected pollutants. We carried out a total of 89 single runs, repeating on a 2.1 km long pre-defined route between an origin-destination pair (the University of Surrey to a local school) during the morning (08:00–10:00 h; local time) and afternoon (15:00–17:00 h) hours. These run simulated morning drop-off and afternoon pick-off times of school children. Overall, the experimental runs took about 66 h and covered the total length of 145 km. Substantial variability is observed in measured concentrations of different pollutants within each run (e.g., up to 290-times for PNC) and between different runs performed during different times of the day (e.g., ~62% variability in average PNC; ~7% for PM1 and 8% for PM2.5 during morning versus afternoon). The average in-pram concentration of fine particles was always higher by up to 44% compared with adult breathing height during both morning and afternoon runs. The comparison of exposure concentrations at two different sitting heights of double pram showed that PNC concentrations were higher by about 72% at the bottom seat compared to the top seat. Scanning electron microscope (SEM) analysis of PM2.5–10 revealed traces of brake wear, tyre wear and re-suspended dust minerals with the predominance of brake and tyre wear emissions at baby height compared with a relatively larger share of earth crust elements at adult height. For mitigation measures, pram covers reduced concentrations of small-sized particles by as much as 39% (fine particles) and 43% (coarse particles). Our results reinforce the need for mitigating exposures to in-pram babies, especially at urban pollution hotspots such as busy congested roads, bus stops, and traffic intersections.

Highlights

Read more

Summary

Introduction

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.