Abstract

Optical remote sensing is the most widely used method for obtaining forest biomass information. This research investigated the potential of using topographical and high-resolution optical data from Quickbird for measurement of black locust plantation aboveground biomass (AGB) grown in the hill-gully region of the Loess Plateau. Three different processing techniques, including spectral vegetation indices (SVIs), texture, and topography were evaluated, both individually and combined. Simple linear regression and stepwise multiple-linear regression models were developed to describe the relationship between image parameters obtained using these approaches and field measurements. SVI and topography-based approaches did not yield reliable AGB estimates, accounting for at best 23 and 19% of the observed variation in AGB. Texture-based methods were better, explaining up to 70% of the observed variation. A combination of SVIs, texture, and topography yielded an even better R 2 value of 0.74 with the lowest root mean square error (17.21 t/ha ) and bias (−1.85 t/ha ). The results suggest that texture information from high-resolution optical data was more effective than SVIs and topography to estimate AGB. The performance of AGB estimation can be improved by adding SVIs and topography results to texture data; the best results can be obtained using a combination of these three data types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.