Abstract

Triple-quadrupole inductively coupled plasma mass spectrometry (ICP-QQQ-MS) is a unique analytical technique which is, next to speciation analyses, applied for the determination of total element concentrations in several matrices. Due to its wide linear range, short analysis times, and the collision-reaction gas technology, it is capable of addressing a high number of analytes in a single run with sufficient low limits of quantification for river water monitoring. Over the last decades, the focus of the environmental monitoring changed from “traditional” and regulated analytes to elements of possibly rising concern from new applications such as the so-called technology-critical elements (TCE). By widening the analytical window of this method for applications in networks of future river water monitoring, a better understanding of natural transport processes and global biogeochemical element cycles will be established and the total number of methods can be reduced. During method development and validation, certified reference materials, calibration check solutions, and spiked river water samples from 12 major German rivers covering different catchment areas were measured and evaluated with the three cell gases He, H2 and O2. The method delivers a best as possible undisturbed simultaneous determination for 68 out of 71 target analytes with recoveries in an accepted range of 80–120% for river water samples (dissolved fraction; <0.45 μm). After comprehensive evaluation, we offer a novel best-practice multi-element method for river water monitoring with the goal of fostering the exchange and discussion between practitioners in long-term river monitoring. It enables the readers to create their own methods based on the scientific needs to monitor elemental “fingerprints” of rivers and their catchments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call