Abstract

Product can experience a combination of cavitation and agitation stresses as a result of dropping post-manufacture. We optimized terephthalic acid (TA) dosimetry, hydroxyphenyl fluorescein fluorimetry, and p-nitrophenol calorimetry as tools to detect and quantify the levels of hydroxyl radicals generated in solution. Using TA dosimetry, we determined the level of hydroxyl radicals generated from a vial drop and found that it is a function of drop height and fill volume and that protein and excipients may serve to mitigate but not completely quench the radicals. Additionally, we optimized sonication and friability as scale-down models to simulate dropping stresses and applied them to assess the impact on the stability of biologics. Our results suggest that chemical degradation dominates when a protein is subjected to cavitation stress alone, and that physical degradation induced by air-liquid and solid-liquid interfaces is the dominant degradation mode when there is a combination of cavitation and agitation stress. Taken together, this work provides a quick and simplistic approach that can be applied during drug product process development to evaluate the impact of drop stresses on the stability of biologic drug product.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call