Abstract

Helium Plasma Ionization (HePI) generates gaseous negative ions upon exposure of vapors emanating from organic nitro compounds. A simple adaptation converts any electrospray ionization source to a HePI source by passing helium through the sample delivery metal capillary held at a negative potential. Compared with the demands of other He-requiring ambient pressure ionization sources, the consumption of helium by the HePI source is minimal (20-30 ml/min). Quantification experiments conducted by exposing solid deposits to a HePI source revealed that 1 ng of 2,4,6-trinitrotoluene (TNT) on a filter paper (about 0.01 ng/mm(2)) could be detected by this method. When vapor emanating from a 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) sample was subjected to helium plasma ionization mass spectrometry (HePI-MS), a peak was observed at m/z 268 for (RDX●NO(2))(-). This facile formation of NO(2)(-) adducts was noted without the need of any extra additives as dopants. Quantitative evaluations showed RDX detection by HePI-MS to be linear over at least three orders of magnitude. TNT samples placed even 5 m away from the source were detected when the sample headspace vapor was swept by a stream of argon or nitrogen and delivered to the helium plasma ion source via a metal tube. Among the tubing materials investigated, stainless steel showed the best performance for sample delivery. A system with a copper tube, and air as the carrier gas, for example, failed to deliver any detectable amount of TNT to the source. In fact, passing over hot copper appears to be a practical way of removing TNT or other nitroaromatics from ambient air.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call