Abstract

AbstractA framework to perform quantification and reduction of uncertainties in a wind turbine numerical model using a global sensitivity analysis and a recursive Bayesian inference method is developed in this article. We explain how a prior probability distribution on the model parameters is transformed into a posterior probability distribution, by incorporating a physical model and real field noisy observations. Nevertheless, these approaches suffer from the so‐called curse of dimensionality. In order to reduce the dimension, Sobol' indices approach for global sensitivity analysis, in the context of wind turbine modeling, is presented. A major issue arising for such inverse problems is identifiability, that is, whether the observations are sufficient to unambiguously determine the input parameters that generated the observations. Global sensitivity analysis is also used in the context of identifiability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.