Abstract

Spores of Bacillus (B.) cereus group species are frequent contaminants in foodstuffs including spices and herbs. However, the distribution of individual B. cereus group species is unknown as standard cultural methods are insufficient for differentiation. Real-time PCR is an alternative method to detect, differentiate and quantify B. cereus group species in food.In our study we applied a combination of previously described real-time PCR assays to detect and quantify the B. cereus group (excluding B. cytotoxicus) with simultaneous discrimination of B. pseudomycoides and cry1-positive B. thuringiensis as well as differentiation of B. weihenstephanensis from B. cereus group species with non-rhizoid colony morphology. For testing food matrices, which can also include PCR inhibiting substances, an internal amplification control was included. In total, five DNA extraction kits were tested on pure spore suspensions to select the one with the best recovery rate when coupled to real-time PCR. The Qiagen DNeasy Blood & Tissue Kit performed best with a limit of detection (LOD) of approximately 100 cfu/ml for spores of each B. cereus, B. weihenstephanensis, B. thuringiensis and B. pseudomycoides strain. However, applied to allspice, paprika, pepper and oregano artificially contaminated with B. cereus spores the LOD was ≥105 cfu/g. In contrast, using the open-formula cetyltrimethylammonium bromide (CTAB) method LODs of 102 to 103 cfu/g were achieved for paprika, pepper and oregano. For allspice, the LOD was 106 cfu/g.Our quantitative multiplex real-time PCR coupled to DNA extraction by the CTAB method provides a sensitive culture independent technique with the potential to quantitatively detect and differentiate B. cereus group species in several spices and herbs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call