Abstract

Electrospray (ES) sources are commonly used to introduce nonvolatile materials (e.g., nanoparticles, proteins, etc.) to the gas phase for characterization by mass spectrometry or ion mobility. Recent studies in our group using ES ion mobility to characterize protein aggregation in solution have raised the question as to whether the ES itself induces aggregation and thus corrupts the results. In this article, we develop a statistical model to determine the extent to which the ES process induces the formation of dimers and higher-order aggregates. The model is validated through ES differential mobility experiments using gold nanoparticles. The results show that the extent of droplet-induced aggregation is quite severe and previously reported cutoff criterion is inadequate. We use the model in conjunction with experiment to show the true dimer concentration in a protein solution as a function of concentration. The model is extendable to any ES source analytical system and to higher aggregation states. For users only interested in implementation of the theory, we provide a section that summarizes the relevant formulas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.