Abstract
As an extension of previous work, we calculate the production cross section of heavy neutron-rich isotopes by employing the quantal diffusion description to $^{48}\mathrm{Ca}+^{238}\mathrm{U}$ collisions. The quantal diffusion is deduced from stochastic mean-field approach, and transport properties are determined in terms of time-dependent single-particle wave functions of the time-dependent Hartree-Fock theory. As a result, the approach allows for prediction of production cross sections without any adjustable parameters. The secondary cross sections by particle emission are calculated with the help of the statistical gemini$++$ code.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.