Abstract

The cellular mechanisms underlying the effects of high pressure, GABAergic presynaptic inhibition, and low [Ca2+]0 on glutamatergic excitatory synaptic transmission were studied in the opener muscle of the lobster walking leg. Excitatory postsynaptic currents (EPSCs) were recorded with or without prior stimulation of the inhibitor using a loose macropatch clamp technique at atmospheric pressure and at 6.9 MPA helium pressure. High pressure reduced the mean EPSC amplitude and variance, decreased the quantal content (m), but did not affect the quantum current (q). Pressure shifted the median of the amplitude histogram to the left by 1-2 q. Under normal pressure conditions, presynaptic inhibition and low [Ca2+]0 induced similar effects. However, quantal analysis using a binomial frequency distribution model revealed that high pressure and low [Ca2+]0 diminished n (available active zones) and slightly increased p (probability of release), but presynaptic inhibition reduced p and slightly increased n. At high pressure, presynaptic inhibition was reduced, at which time the major contributor to the inhibitory process appeared to be reduction in n and not p. The similarity of the alterations in quantal parameters of release at high pressure, low [Ca2+]0, and in some conditions of presynaptic inhibition is consistent with the hypothesis that pressure reduces Ca2+ inflow into the presynaptic nerve terminals to affect the Ca(2+)-dependent quantal release parameters n and p.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.