Abstract

We consider Hilbert's sixth problem on the axiomatization of physics starting with a higher degree Heisenberg commutation relation involving the Dirac operator and the Feynman slash of scalar fields. The two sided version of the commutation relation in dimension 4 implies volume quantization and determines a noncommutative space which is a tensor product of continuous and discrete spaces. This noncommutative space predicts the full structure of a unified model of all particle interactions based on Pati-Salam symmetries or, as a special case, the Standard Model. We study implications of this quantization condition on Particle Physics, General Relativity, the cosmological constant and dark matter. We demonstrate that, with little input, noncommutative geometry gives a compelling and attractive picture about the nature and structure of space-time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.