Abstract

Intelligent methods for automatic protection and restoration are critical in optical transport mesh networks. This paper discusses the problem of quality-of-service (QoS)-based protection in terms of the protection-switching time and availability for end-to-end lightpaths in a WDM mesh network. We analyze the backup lightpath-sharing problem in such networks and study the correlation of the working lightpaths and the impact of the correlation on the sharing of the backup lightpaths. We present a multi-protocol-label-switching (MPLS) control-based fully distributed algorithm to solve the protection problem. The proposed algorithm includes intelligent and automatic procedures to set up, take down, activate, restore, and manage backup lightpaths. It greatly reduces the required resources for protection by allowing the sharing of network resources by multiple backup lightpaths. At the same time, it guarantees, if possible, to satisfy the availability requirement even with resource sharing by taking the correlation of working lightpaths into consideration. A simple analysis of the proposed algorithm in terms of computation time and message complexity indicates that the implementation of the algorithm is practical. The illustrative studies that compare the performance of 1:1, unlimited sharing, and QoS-based backup sharing algorithms indicate that QoS-based sharing achieves comparable performance as unlimited sharing, which is much better than the 1:1 backup scheme in terms of connection blocking probability, average number of connections in the network for a given offered load, and network resource utilization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.