Abstract

Vein images generally appear darker with low contrast, which require contrast enhancement during preprocessing to design satisfactory hand vein recognition system. However, the modification introduced by contrast enhancement (CE) is reported to bring side effects through pixel intensity distribution adjustments. Furthermore, the inevitable results of fake vein generation or information loss occur and make nearly all vein recognition systems unconvinced. In this paper, a “CE-free” quality-specific vein recognition system is proposed, and three improvements are involved. First, a high-quality lab-vein capturing device is designed to solve the problem of low contrast from the view of hardware improvement. Then, a high quality lab-made database is established. Second, CFISH score, a fast and effective measurement for vein image quality evaluation, is proposed to obtain quality index of lab-made vein images. Then, unsupervised $K$ -means with optimized initialization and convergence condition is designed with the quality index to obtain the grouping results of the database, namely, low quality (LQ) and high quality (HQ). Finally, discriminative local binary pattern (DLBP) is adopted as the basis for feature extraction. For the HQ image, DLBP is adopted directly for feature extraction, and for the LQ one. CE_DLBP could be utilized for discriminative feature extraction for LQ images. Based on the lab-made database, rigorous experiments are conducted to demonstrate the effectiveness and feasibility of the proposed system. What is more, an additional experiment with PolyU database illustrates its generalization ability and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call