Abstract

A concurrent locality-preserving dynamic latent variable (CLDLV) method is proposed to extract the correlation between process variables and quality variables for quality-related dynamic process monitoring. Given that dynamic process data can easily be contaminated by noise and outliers and conventional dynamic latent variable models lack robustness, a low-rank autoregressive model is developed to deal with autocorrelation and cross-correlation properties among the data. Then neighborhood structure information is integrated into the partial least squares model, which can better reveal the essential structure of the data. The final concurrent projection of the latent structures is employed to monitor output-related faults and input-related process faults that affect quality. The Tennessee Eastman process and hot strip mill process are used to demonstrate the effectiveness of CLDLV-based detection and diagnostic methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.