Abstract
For batch process fault detection, regular data-driven methods cannot distinguish quality-irrelevant faults from quality-relevant faults. To solve such problem, we propose a multiway multi-subspace canonical variate analysis (MMCVA) method for the batch processes. First, the combination of batch-wise unfolding and variable-wise unfolding is adopted to unfold the three-way process and quality data in to two-way data. Then, we use CVA to project the process and quality data spaces to three subspaces, a process-quality correlated subspace, a quality-uncorrelated process subspace, and a process-uncorrelated quality subspace. Fault detection statistics are developed based on the three subspaces. The proposed MMCVA method is capable of indicating the normality or abnormality of the quality variables, while detecting a process fault. The simulation results of a fed-batch penicillin fermentation process illustrate the effectiveness of the proposed method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.