Abstract
The emergence of the Internet of Things (IoT) has attracted significant attention in industrial environments. These applications necessitate meeting stringent latency and reliability standards. To address this, the IEEE 802.15.4e standard introduces a novel Medium Access Control (MAC) protocol called Time Slotted Channel Hopping (TSCH). Designing a centralized scheduling system that simultaneously achieves the required Quality of Service (QoS) is challenging due to the multi-objective optimization nature of the problem. This paper introduces a novel optimization algorithm, QoS-aware Multi-objective enhanced Differential Evolution optimization (QMDE), designed to handle the QoS metrics, such as delay and packet loss, across multiple services in heterogeneous networks while also achieving the anticipated service throughput. Through co-simulation between TSCH-SIM and Matlab, R2023a we conducted multiple simulations across diverse sensor network topologies and industrial QoS scenarios. The evaluation results illustrate that an optimal schedule generated by QMDE can effectively fulfill the QoS requirements of closed-loop supervisory control and condition monitoring industrial services in sensor networks from 16 to 100 nodes. Through extensive simulations and comparative evaluations against the Traffic-Aware Scheduling Algorithm (TASA), this study reveals the superior performance of QMDE, achieving significant enhancements in both Packet Delivery Ratio (PDR) and delay metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.