Abstract

The aim of our study was to investigate the influence of vitrification on developmental rate and quality (total number of cells, number of blastomeres in inner cell mass (ICM) area, apoptotic index and embryo diameter) of transgenic (carrying an endogenous-hFVIII or exogenous-enhanced green fluorescent protein (EGFP) gene) rabbit embryos. EGFP-positive rabbit embryos were produced under in vitro conditions by the microinjection of foreign genes into the pronucleus of fertilized eggs. The transgenic rabbit embryos with the hFVIII gene were produced by mating homozygous transgenic rabbits and flushing at the single-cell stage. Developmental rate of vitrified/thawed transgenic embryos that reached hatching blastocyst stage (68.00% and 69.00%) and differed significantly (p < 0.001) from those in control embryos (100.00%). Significant difference (p < 0.05) was found in total cell counts between control (117.00 ± 36.00) and vitrified (141.00 ± 34.80) hFVIII-positive embryos. The higher proportion of ICM cells (32.00%) and greatest embryo diameter (130.85 ± 10.90) were found in the control group compared with the transgenic. Ratio of apoptotic cells was significantly higher (p < 0.01) in the control group (2.50%) and vitrified EGFP-positive embryos (2.90%) compared with the vitrified, hFVIII-positive group of embryos (0.70%). Our results demonstrate that neither gene microinjection itself, nor exogenous (EGFP) and endogenous (hFVIII) gene expression interferes with developmental rate and quality of rabbit embryos. However, a combination of microinjection and vitrification significantly decreases (p < 0.001) the survival rate of rabbit embryos.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.