Abstract

Cloud-assisted cognitive machine-to-machine co- mmunications (CM2M) is a new paradigm to improve the mobile services, which have drawn considerable attention in industry and academia. In this paper, we consider the quality of protection (QoP) of information transmission in cloud-assisted CM2M communications. In such an environment, the secondary M2M system intends to share the primary spectrum on the condition that the secondary transmitter (ST) has to relay the primary message. However, the ST is a low-energy device which adopts the energy harvesting technique to power itself. In particular, we focus on secure information transmission for the primary system when the secondary users (SUs) are the potential eavesdroppers. We aim to jointly design power splitting and secure beamforming to maximize the secondary M2M system data rate subject to the secrecy requirement of the primary system and the ST power constraint. To solve this non-convex problem, we propose a computationally efficient two-stage optimization approach. Simulation results demonstrate that our proposed scheme achieves a significant transmission rate of the secondary M2M system while provides a high secrecy rate for the primary system compared to the scheme without energy harvesting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.