Abstract

his work was supported by project PDR2020-1.0.1-FEADER-031373, funded by national funds through Fundacao para a Ciencia e a Tecnologia (FCT)/MCTES and co-funded through the European Regional Development Fund (ERDF), and by project UIDB/05183/2020 (MED) financed by national funds through FCT.

Highlights

  • The oxygen and hydrogen isotopes composition [18O/16O and 2H/1H or δ18O and δD when standardized to the international water standard Vienna-Standard Mean Ocean Water (V-SMOW)] of rainwater has been widely used as a tracer of the hydrological cycle

  • The variation of δ17O, δ18O, δD, d-excess, and 17O-excess of the precipitation in Villanúa during the monitoring period is displayed in Figure 3, whereas their average, maximum, and minimum values are indicated in Table 1 at seasonal and annual scales covering the 2 years of sampling

  • Mean rainfall δ18O values in Villanúa are similar to those found in other locations situated inland the Iberian Peninsula (IP) at a relative high elevation (δ18O ranging from −7 to −10 ) and that present a progressive depletion as distance to the coast and elevation increase, as a result of the continental effect (Araguás-Araguás and Diaz Teijeiro, 2005). δD values are between those found on the IP with a continental influence (Araguás-Araguás and Diaz Teijeiro, 2005)

Read more

Summary

Introduction

The oxygen and hydrogen isotopes composition [18O/16O and 2H/1H or δ18O and δD when standardized to the international water standard Vienna-Standard Mean Ocean Water (V-SMOW)] of rainwater has been widely used as a tracer of the hydrological cycle. Other effects depend on variables that change with time for a specific location (such as temperature, amount of precipitation, and moisture source), which result in seasonal oscillations of the isotope composition of precipitation at the site. In addition to the primary parameters δ18O and δD, the deviation of a given sample with respect to the Global Meteoric Water Line (GMWL), known as deuterium excess (d-excess = δD – 8 δ18O) (Craig, 1961; Dansgaard, 1964), has been widely used to define moisture source characteristics, such as the relative humidity (RH) and the temperature of the sea surface at the time of water vapor formation (Merlivat and Jouzel, 1979)

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.