Abstract

Ensemble perception is efficient because it summarizes redundant and complex information. However, it loses the fine details of individual items during the averaging process. Such characteristics of ensemble perception are similar to those of coarse processing. Here, we tested whether extracting an average of a set was similar to coarse processing. To manipulate coarse processing, we used the fast flicker adaptation known as suppressing coarse information processed by the magnocellular pathway. We hypothesized that if computing the average of a set relied on coarse processing, the precision of an averaging task should decrease after adaptation compared to baseline (no-adaptation). Across experiments with various features (orientation in Experiment 1, size in Experiment 2, and facial expression in Experiment 3), we found that suppressing coarse information did not disrupt the performance of the averaging tasks. Rather, adaptation increased the precision of mean representation. The precision of mean representation might have increased because fine information was relatively enhanced after adaptation. Our results suggest that the quality of ensemble representation relies on that of individual items.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.