Abstract

The calculation of molecular quantum similarity measures using the molecular electron density requires the electron density and molecular alignment between two molecules. To obtain meaningful quantum similarity matrices, the electron density should be calculated efficiently and accurately and the alignment should be internally consistent. The internal consistency of the alignment for a series of molecules is investigated through distance geometry concepts. The calculation of the quantum similarity matrix requires the calculation of a quadratic number of similarity integrals, and a scheme to obtain these efficiently is developed. Both the alignment procedure and the ASA method for approximate molecular electron densities are tested for a set of steroid molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.