Abstract

The quality of glutinous rice (GR) is susceptible to deterioration and losses due to biological or environmental factors during storage. Traditional quality assessment techniques are often time-consuming and challenging. In this study, a rapid and reliable hyperspectral imaging (HSI) technique is utilized to monitor GR quality during storage. Paddy samples were dried at 50 °C, 60 °C and 70 °C. Subsequently, these samples were milled and stored under three conditions: freeze storage (−10 °C), cold room (6 °C) and ambient (∼26 °C) for 6 months. The methodology involved data acquisition from both HSI and standard references methods, with data on hyperspectral reflectance, head rice yield (HRY), broken rice yield (BRY) and milled rice yield (MRY) collected every two weeks. Five machine learning (ML) models were evaluated for quality prediction using Python3, with Random Forest (RF) identified as the best performer, achieving a coefficient of determination (R2) of 0.995. Hyperparameter tuning (HPT) further improved the RF model’s R2 by 0.3 %. Parity plot analysis confirmed the accuracy of the RF model in describing GR quality during storage. The study demonstrates the significant impacts of different storage and drying temperatures on HSI data and GR quality attributes. Significant differences in reflectance were observed, with higher reflectance for samples dried at 60 °C and freeze-storage, while lower reflectance for samples dried at 70 °C and cold-room storage. These findings align with reference method results and ML predictions, revealing that drying paddy at 60 °C and storing it under freeze conditions enhances HRY and increases the commercial value of GR. Overall, this study highlights the potential of the HSI for real-time quality monitoring of GR and its applicability to other grains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.