Abstract

Assessing software quality, in general, is hard; each metric has a different interpretation, scale, range of values, or measurement method. Combining these metrics automatically is especially difficult, because they measure different aspects of software quality, and creating a single global final quality score limits the evaluation of the specific quality aspects and trade-offs that exist when looking at different metrics. We present a way to visualize multiple aspects of software quality. In general, software quality can be decomposed hierarchically into characteristics, which can be assessed by various direct and indirect metrics. These characteristics are then combined and aggregated to assess the quality of the software system as a whole. We introduce an approach for quality assessment based on joint distributions of metrics values. Visualizations of these distributions allow users to explore and compare the quality metrics of software systems and their artifacts, and to detect patterns, correlations, and anomalies. Furthermore, it is possible to identify common properties and flaws, as our visualization approach provides rich interactions for visual queries to the quality models' multivariate data. We evaluate our approach in two use cases based on: 30 real-world technical documentation projects with 20,000 XML documents, and an open source project written in Java with 1000 classes. Our results show that the proposed approach allows an analyst to detect possible causes of bad or good quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.