Abstract
This study explored the effect of the combination of Saccharomyces yeast, non-Saccharomyces yeast (Pichia kudriavzevii), and Lactiplantibacillus plantarum during cider fermentation on physicochemical properties, antioxidant activities, flavor and aroma compounds, as well as sensory qualities. Ciders fermented with the triple mixed-cultures of these three species showed lower acid and alcohol content than those fermented with the single-culture of S. cerevisiae. The antioxidant activities were enhanced by the triple mixed-culture fermentation, giving a higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging rate and total antioxidant capacity; specifically, the SPL5 cider showed the highest DPPH radical scavenging rate (77.28%), while the SPL2 gave the highest total antioxidant capacity (39.57 mmol/L). Additionally, the triple mixed-culture fermentation resulted in improved flavor and aroma with a lower acidity (L-malic acid) and higher aroma compounds (Esters), when compared with the single-culture fermented ciders (Saccharomyces cerevisiae); more specifically, the SPL4 cider resulted in the highest total flavor and aroma compounds. In addition, sensory evaluation demonstrated that ciders produced using the triple mixed-cultures gained higher scores than those fermented using the single-culture of S. cerevisiae, giving better floral aroma, fruity flavor, and overall acceptability. Therefore, our results indicated that the triple mixed-cultures (S. cerevisiae, P. kudriavzevii, and L. plantarum) were found to make up some enological shortages of the single S. cerevisiae fermented cider. This study is believed to provide a potential strategy to enhance cider quality and further give a reference for new industrial development protocols for cider fermentation that have better sensory qualities with higher antioxidant properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.